Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production.
نویسندگان
چکیده
Our objective was to investigate whether the direct bilateral infusion of the monounsaturated fatty acid (MUFA) oleic acid (OA) within the mediobasal hypothalamus (MBH) is sufficient to reproduce the effect of administration of OA (30 nmol) in the third cerebral ventricle, which inhibits glucose production (GP) in rats. We used the pancreatic basal insulin clamp technique (plasma insulin ∼20 mU/ml) in combination with tracer dilution methodology to compare the effect of MBH OA on GP to that of a saturated fatty acid (SFA), palmitic acid (PA), and a polyunsaturated fatty acid (PUFA), linoleic acid (LA). The MBH infusion of 200 but not 40 pmol of OA was sufficient to markedly inhibit GP (by 61% from 12.6 ± 0.6 to 5.1 ± 1.6 mg·kg(-1)·min(-1)) such that exogenous glucose had to be infused at the rate of 6.0 ± 1.2 mg·kg(-1)·min(-1) to prevent hypoglycemia. MBH infusion of PA also caused a significant decrease in GP, but only at a total dose of 4 nmol (GP 5.8 ± 1.6 mg·kg(-1)·min(-1)). Finally, MBH LA at a total dose of 0.2 and 4 nmol failed to modify GP compared with rats receiving MBH vehicle. Increased availability of OA within the MBH is sufficient to markedly inhibit GP. LA does not share the effect of OA, whereas PA can reproduce the potent effect of OA on GP, but only at a higher dose. It remains to be determined whether SFAs need to be converted to MUFAs to exert this effect or whether they activate a separate signaling pathway to inhibit GP.
منابع مشابه
Influence of diabetes surgery on a gut-brain-liver axis regulating food intake and internal glucose production.
It has long been known that the brain, especially the hypothalamus, can modulate both insulin secretion and hepatic glucose fluxes, via the modulation of the sympathetic system (promoting glycogen breakdown) and the parasympathetic system (stimulating glycogen deposition). Central insulin signalling or hypothalamic long-chain fatty acid oxidation can also control insulin's suppression of endoge...
متن کاملCentral nervous system and glucose homeostasis
Type 2 diabetes (T2D) is closely associated with obesity. Obesity features an abnormality in energy balance with excess energy stored in fat tissues. In T2D, the ability to regulate glucose homeostasis is compromised resulting in hyperglycemia (high levels of blood glucose). Central nervous system (CNS) plays an important role in energy and glucose homeostasis [1]. In normal situations, the neu...
متن کاملLong-term administration of olanzapine induces adiposity and increases hepatic fatty acid desaturation protein in female C57BL/6J mice
Objective(s): Weight gain and metabolic disturbances such as dyslipidemia, are frequent side effects of second-generation antipsychotics, including olanzapine. This study examined the metabolic effects of chronic olanzapine exposure. In addition, we investigated the hepatic fatty acid effects of olanzapine in female C57BL/6J mice fed a normal diet.Materials and Methods: Female C57BL/6J mice ora...
متن کاملاثر منابع مختلف چربی بر انرژتیک و وضعیت اکسایش کاهش میتوکندری های جگر جوجه های گوشتی تحت شرایط تنش گرمایی بلندمدت
Heat stress has adverse effects on livestock production, hence reducing benefits of them. With the viewpoint of reducing heat production within cells,an experiment was conducted to investigate the effects of different sources of fat on mitochondrial energetics of broilers in chronic heat-stress condition. The consumed fat included: a)tallow; as a source of long-chain fatty acids, b)coconut oil;...
متن کاملLoss of Hepatic Mitochondrial Long-Chain Fatty Acid Oxidation Confers Resistance to Diet-Induced Obesity and Glucose Intolerance.
The liver has a large capacity for mitochondrial fatty acid β-oxidation, which is critical for systemic metabolic adaptations such as gluconeogenesis and ketogenesis. To understand the role of hepatic fatty acid oxidation in response to a chronic high-fat diet (HFD), we generated mice with a liver-specific deficiency of mitochondrial long-chain fatty acid β-oxidation (Cpt2L-/- mice). Paradoxica...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 299 4 شماره
صفحات -
تاریخ انتشار 2010